Over View of Ragauskas' Fiber Research Program

Art J. Ragauskas School of Chemistry and Biochemistry Institute of Paper Science and Technology Georgia Institute of Technology

Ragauskas Research Vision

Focused on Exploiting Lignocellulosics Chemistry To Develop Innovative Sustainable Solutions For The Pulp and Paper Industry

Research Program Initiated 1989

Ragauskas Team Exploiting Lignocellulosic Chemistry - Engineering

Material Research Paper Board Material Research Fillers Composites Energy Integrated Biorefinery

Highlights of Current Research Portfolio

Ongoing Research: Fiber Engineering

Program Objective:

Identify topochemical fiber properties that enhance physical properties of fibers, paper and board. Research activities include:

- Innovative pulping and bleaching technologies to control fiber charge and enhance refinability, tensile, tear, stiffness, bulk, STFi
- Curl/Kink control strategies
- Enhanced extractives control
- Crosslinking and sulfonating fibers for enhanced water absorbency

Ongoing Research: Advanced Pulping/Bleaching

Program Objective:

Integration of kraft pulping and bleaching operations for reduced cost and improved pulp properties.

- High kappa pulping/extended oxygen delignification for enhanced yield
- Optimized ECF pulp bleaching
 - Minimizing bleaching chemicals
 - Minimize corrosivity of bleaching equipment
- Hexenuronic acid control strategies
- Reduced reversion of fully bleached kraft pulps

Fiber Modification/Fiber-Fiber Bonding

HIGHLIGHTS

OD(EOP)D Mill Tensile Strength and \mathbf{O} **Bulk/Surface Acid Groups**

Gradual loss of acid groups due in part

Finally P increases Brightness - Known

Previously not documented Strength-acid groups Due to terminal P-stage

Fundamentals of Fiber Modification Chemistry: Importance of Carboxylate Groups

Main group responsible for surface and bulk charge of kraft fibers.

HOOC

Θοος

¹specific

- Important for pulp swelling.
- Increase pulp fiber softness and collapsibility
- Improve pulp strength properties.
- Improve beatability.
- Capable of ion-exchange reactions.

çoo

[-COO⁻][H⁺]

-COOH

соон

Barzyk, Page, and Ragauskas (1996)

Fiber Modification/Fiber-Fiber Bonding

Program Strengths

- 1. Extensive mill expertise
- 2. Internationally recognized in relationship between fiber chemistry physical properties
- 3. Fiber Imaging capabilities: SEM/TEM/AFM/ESCA/TOF-SIMS
- 4. Established team with leading expertise in mill pulping/bleaching/refining, paper physics, fiber chemistry, imaging

Modified Filler Studies IPST@GT

Program Team

Program Leader:RagauskasTask Team Leaders:Y. Deng, A. Ragauskas

Program Objective:

- Increase the value of pulp products by 50% by identifying new composite paper product platforms that will dramatically improve existing sheet properties and develop new applications for pulp fibers.
- Develop non-brittle synthetic fibrous fillers with the ability to bond with fibers and fillers.
- Applications include printing, packaging, food, and sanitary products.

Modified Filler Studies:

FY 2004 – 08 Program Goals:

Research directed at determining the important topochemical parameters for developing new PCC/clay fillers that permit increased filler application levels without additional sheet strength losses

Lower Cost Packaging and Writing Paper

Industry Sponsored Composite Research Program

CW Fiber Applications

PLA – Pulp Composites

Product Platform Research

Developing New Markets for Kraft Pulps

- Innovative biocomposites: pulp + plastics
- Total plastic filler market is 5.5 billion lbs
- Approx. 1.7 billion lbs is reinforced with fiber glass

Glass fiber is ~ \$1800/ton

 Plastic wood with wood flour is about a 400 million lb market growing 10-20% year, wood flour provides little if no strength benefits

Research directed at using kraft pulp fibers

Nano-Enhanced Paper: Coatings

Application of Polyelectrolyte Coating Technologies *Layer-by-Layer Self-Assembly*

General Considerations:

- Assembly via electrostatic and H-bond interactions
- Aqueous Processing
- Process Parameters:
 - pH; salt concentration
 - Polymer charge/DP
- Wide range of materials can be employed
 - Paper
 - Board
 - Tissue
 - Fillers

Nano-Enhanced Paper: Coatings Current Studies n NH₃⁺CI СГ 2.5 **Initial Fibers** 2.0 **1** 1 8 Bilayers of PAH Kaolin 2 bilayers 4 bilayers 8 bilayers

Water Contact Angle Untreated Treated

Nano-Enhanced Paper: Coatings Current Studies

ŇӉ⁺СГ

Bilayers of PAH/Kaolin

Ongoing Studies

- Enhance hydrophobic effect
- Optical properties
- Alternative barrier properties
- Self-cleaning nano-coatings

Fiber/Sheet Modification

Research Programs

Determining Fundamental Principles of Wet Fiber Deformability

Research Objective: Establish fundamental principles controlling wet fibre *flexibility* (deformability) is important for the physical and optical properties for paper/tissue. The response of fibres to the forces of wet pressing and surface tension determines the ultimate sheet structure and properties.

Research studies will examine employ advanced fiber concepts on flexibility vs deformability and determine role of surface charge, refining, and wet end chemical

Determining Fundamental Principles of Wet Fiber Deformability

Novel Visualization of Fiber-Fiber Bonding with FRET

Novel Visualization of Fiber-Fiber Bonding with FRET

Technique Used to Explore Fiber-Fiber Treatments

BioGrafting SW Kraft Fibers

BioGrafting SW Kraft Fibers

Burst Improvements

Future Opportunities

- Enzymatic control of fiber/sheet properties
- Modification of sheet friction
- Functional paper

Related Research Programs

Nanotechnology/Pulp and Paper

Nanocellulose Whiskers/Balls

- New cellulosic composites
- New papermaking additives
- Novel viscosity modifiers

Homeland Security

- Tamper proof
- Counterfeit resistance
- Smart Packaging

Provide controllable inner environment for packages: - CO₂, O₂, H₂O, N₂

Self-assembly Coatings

- Enhanced wet strength
- New Barrier Properties
- Novel Optical Properties
- Superhydrophobic
- Spoilage/Flavor Control
- Long Term Storage
- Spoilage Indicators
- New biocomposite packaging materials

Nanotechnology/Pulp and Paper

Homeland Security

- Tamper proof
- Counterfeit resistance
- Smart Packaging

vironment

Provide controllable inner environment for packages: - CO₂, O₂, H₂O, N₂

Defense systems for bacterial/fungus growth - Passive - Active

Spoilage/Flavor Control
Long Term Storage
Spoilage Indicators
New biocomposite packaging materials

Product Platform Research

Developing New Markets for Kraft Pulps

- Innovative biocomposites: pulp + plastics
- Total plastic filler market is 5.5 billion lbs
- Approx. 1.7 billion lbs is reinforced with fiber glass

Glass fiber is ~ \$1800/ton

 Plastic wood with wood flour is about a 400 million lb market growing 10-20% year, wood flour provides little if no strength benefits

Research directed at using kraft pulp fibers

NanoCellulosic Structures Nanocellulose Whisker: Acrylic Acid Composite Film **Interest from Consumer Packaging Companies** Latex Film 20% Cellulose Whiskers:Latex Film .000 JM/ 5% Cellulose Whiskers:Latex Film 40 14 Tensile strength, Contact angle **MP**a 12 10

□ view angle ☆-light angle

1.000 pr 0.257 U/

09161055.00

Nano-Enhanced Paper: Coatings

Application of Polyelectrolyte Coating Technologies *Layer-by-Layer Self-Assembly*

General Considerations:

- Assembly via electrostatic and H-bond interactions
- Aqueous Processing
- Process Parameters:
 - pH; salt concentration
 - Polymer charge/DP
- Wide range of materials can be employed
 - Paper
 - Board
 - Tissue
 - Fillers

Nano-Enhanced Paper: Coatings

Current Studies

Initial Fibers

8 Bilayers of PAH Kaolin

Water Contact Angle Untreated Treated

Nano-Enhanced Paper: CoatingsCurrent Studies() n $NH_3^+ C\Gamma$ $NH_3^+ C\Gamma$

Bilayers of PAH/Kaolin

Ongoing Studies

- Enhance hydrophobic effect
- Optical properties
- Alternative barrier properties
- Self-cleaning nano-coatings

Additional Material Studies

•Biomaterials/chemicals from wood biopolymers

- Superabsorbers from pulp
 - Crosslinked
 - High Fiber Charge

Water

Water Absorbency Values - Birch

New Infrastructure Capabilities: Nanomaterials Analysis and Characterization Center

- Environmental SEM
- 4 TEMs including High Resolution and Cryogenic TEMs
- ✓ 3 SEMs including a High Resolution SEM
- ✓ Digital STM/AFM Facility
- ✓ 200 KeV STEM/TEM
- ✓ 2 Dual Beam Focused Ion Beam Units
- ✓ Scanning Probe Microscope
- ✓ 3 XRDs

BioEnergy BioFuels Research Efforts

Porest Profile Hill

Fulbright Chair Alternative Energy Ragauskas Mission

- Swedish-US
 - Industry-Governmental Partnerships
 - Student Exchange
 - Collaborative Research Programs
 - Technology Demonstrations

Innovative Swedish/US Forest BioRefinery Technologies Addressing The Challenge of Sustainable BioEnergy/BioFuels

Related BioMass-BioFuels Activities Ragauskas Team

Past Research Accomplishments:

- Characterization of mature and thinning wood, relationship to final pulp properties
- Photostabilization Photoreversion studies
- Fundamental and process chemistry of ECF TCF bleaching
 - D, D_{HT}, A, O, OO, P*, E*, Z, X, and biological agents
 - Scale formation, NPE
- Mechanical Pulp Bleaching
- Relationship between kraft pulping and fiber chemistry
 - Yield, Strength, Brightness, Pulp bleachability
- Extended Oxygen Delignification high-kappa kraft pulps>Yield
- Extensive experience on northern HW and SW
- Expertise on MHW, Acacia, Eucalyptus
- Visiting Professor to KTH, STFi, Chalmers, University of Beira Interior /Portugal

 Visiting researchers/collaboration with Chalmers, STFI, NTNU, UBI, VTT, SCUT/Guangzhou NCSU, Auburn University, USDA, ORNL, GT ICL, Latvia, Lithuania, China, Indonesian Ragauskas Team Exploiting Lignocellulosic Chemistry - Engineering

Material Research Paper Board Material Research Fillers Composites

Energy Integrated Biorefinery

Established Experience Wood Resources, Pulping, Bleaching, Papermaking Process Chemistry, Engineering, Paper Physics

Nanotechnology, Biotechnology, Material Science/Chemistry

Ragauskas Research

