Treatment of Waste Paper Sludge to Produce Bioethanol

Institute of Paper Science and Technology

ABSTRACT

This poster examines the potential of generating ethanol from waste paper sludge

OPPORTUNITY

- Current disposal methods for waste paper sludge are costly
- Land applications of sludge are restricted by environmental concerns
- Dried sludge can be burned, but sludge from waste paper mills has low
- heating value due to the high mineral content
- Combining generation of bioethanol with recovery of the mineral fillers would generate income and reduce costs
 - *Sludge would not have to be dried
 - Sludge could be sold to bioethanol producers
 - *Recovered fillers could be used on site for paper generation

Waste Paper Sludge consists of mineral fillers and short fibers

2

Separate and treat fibers

PROJECT OBJECTIVES

- •Evaluate treatability of sludges from various waste paper mills
 - Old newspaper
 - Old corrugated cardboard
 - Mixed waste papers
- •Demonstrate conversion technology on a laboratory scale
 - Lower cellulase loading
 - Demonstrate xylose conversion
 - •Optimize reactor operating parameters
- •Compare the affect of enzymatic and acid hydrolysis treatments on the yield of bioethanol
- •Evaluate the effectiveness of simultaneous saccharification and fermentation (SSF) for bioethanol production

PROJECT BACKGROUND

Hydrolysis (saccharification) of cellulose

Cellulose must be hydrolyzed to release glucose

the freshing for

- Acid hydrolysis
 - uses sulfuric acid and severe conditions acid must be neutralized before fermentation
- Enzymatic hydrolysis mild conditions may have to add xylanase in addition to cellulase
- Need to minimize production of fermentation inhibitors such as furfural and 5-hydroxymethylfurfural often produced by hydrolysis of hemicellulose

Fermentation to produce bioethanol

Yeast are added to the hydrolyzed solution

Yield Factors due to Reaction Conditions

Type of yeast Yeast culture conditions prior to fermentation (can acclimate yeast by maintaining yeast culture on hydrolyzate solution) Fermentation conditions Presence of inhibitors produced during hydrolysis

Yield Factors due to Sludge

Type of paper furnish Non-cellulosic materials such as Lignin Adhesives/stickies Dyes

Georgia Institute of Paper Science Tech and Technology

RESEARCH TASKS

<u>Phase I:</u> Characterization of the composition of various waste paper sludge	
Chemical	Physical:
Mineral content	Particle size distribution
Lignin content	Bulk density
Sugar content	pH

- Criteria: % of cellulose converted to glucose Formation of known inhibitors - furfural and 5hydroxymethylfurfural
- Phase III:
 Comparison of yields from different sludges

 Sludges:
 Experimental conditions

 Old newspaper
 Acid hydrolysis

 Old corrugated cardboard
 Enzymatic hydrolysis
 - Mixed waste papers Simu
- Simultaneous saccharification
 - and fermentation (SSF)

Yield calculation

based on the theoretical maximum of 100% conversion of initial cellulose

Potential Market

>700,000 tons/yr of dry waste paper sludge (50% is cellulose fibers) By EIA calculations of 173 gallons ethanol / dry ton feedstock)

Yield: 60.6 million gallons of ethanol Worth \$9 Million, based on prices for March 28, 2006

PROJECT BENEFITS

New Energy Resource from Waste
No need to dry sludge
Reduced disposal costs
Reduced operating costs by recovery of fillers for paper production