Hardwood fiber modification from the integration of high kappa cooking and extended oxygen delignification for Eucalyptus and Acacia

Yunqiao Pu, Institute of Paper Science and Technology; Kristina Knutson, School of Chemistry and Biochemistry; Dongcheng Zhang, Department of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, GA

PROJECT OBJECTIVES:

- Develop an innovative integrated program for high kappa HW kraft pulping and extended oxygen delignification to produce an oxygen delignified HW kraft pulp with :
 - low HexA content, high fiber charge
 - high fiber/paper strength, good pulp bleachability
 - low TRS black liquor, and bleaching effluent AOX reduction

3-10% higher COOH content in Low AA cooking- O2 delignified pulp than High AA for softwood kraft pulp

Total carboxylic acid content in SW kraft pulps and the corresponding oxygen delignified pulps.

PROJECT BACKGROUND:

- Roles of fiber acidic groups
 - Responsible for the source of fiber charge
 - Principle retention sites of various wet-end additives in pulp suspensions
 - > Affect their flexibility and swelling ability in water
 - Affect the degree of formation of inter-fiber bonding during pressing and drying process, consequently the mechanical properties of dried paper sheets
- Oxygen Delignification
 - Dominant bleaching technologies for both ECF and TCF operations
 - Currently a compromise between pulp quality and limit of
 - delignification
 - > A promising process to increase fiber charge and pulp yield

0 10 20 30 40 50 60 70 80 Kappa number reduction(%)

RESEARCH APPROACH

Overview of Experiment Plan

span and tensile/tear strength

High kappa cooking

> HexA formation and reduction

- Detrimental to pulp bleaching
 operations; mill corrosion problems
- High kappa cooking leading to a lower HexA content in HW kraft pulps

> TRS formation and control

- Traditionally control: oxidation, scrubbing, etc: difficult and costly.
- High kappa cooking leading to reduced TRS formation

- High kappa cooking and optimization
 AA (14-18%), Temp (160-170), sulfidity
- One and two-stage O2 delignification
 fiber charge, selectivity, fiber strength, AOX

PROPOSAL DELIVERABLES

- 1. Conventional and modified high kappa kraft pulping of Eucalyptus or Acacia at high, medium, and low active alkali charge as well as high, medium, and low sulfidity
- 2. Optimization of the cooking conditions to achieve a high kappa number kraft pulp with low HexA and low TRS, high fiber charge, and high fiber and paper strength
- **3.** Extended oxygen delignification of the high kappa HW kraft pulps at different parameters (NaOH, temperature, oxygen pressure)
- 4. Optimize oxygen delignification to achieve high fiber charge, yield, enhanced ClO₂ bleachability and high fiber/paper
- Integrated process of high kappa cooking and Extended Oxygen Delignification

strength

PROJECT VALUE

This program will provide an innovative technology to pulp and paper industry for fiber chemical modification coupled with current oxygen delignification system with the benefit of :

- > 15 20% Increase in Fiber Charge
- ➢ 40 60 % reduction in HexA formation
- > 30 % reduction for TRS
- > 10-15 % increase in fiber strength and paper strength

