

'Enzymatic modification of specialty sisal fibers' Elisabetta Aracri

PROGRAM DESCRIPTION

TECHNICAL DETAILS

 Application of laccase-facilitated fiber modification systems to sisal pulp fibers Optimization of enzymatic treatment conditions with respect to fiber charge and paper strength properties Analysis of the changes imparted to lignin chemical structure by the enzymatic systems 	 Laccase-induced grafting of phenolic compounds will be used to modify unbleached sisal fibers properties Modifications of fiber properties will be investigated using instrumental techniques and the testing of physical strength Modification of lignin chemical structure will be studied by NMR analyses
 PAYOFF Biografting of lignocellulosic fibers is a versatile functionalization method which allows bonding a wide range of laccase substrates to fiber matrix Laccase modification is a novel and environmentally friendly approach for tailoring and/or boosting fiber and paper properties 	 KEY ACCOMPLISHMENTS Evaluate the impact of laccase modification systems on fiber acid content and strength properties Use surface analysis technique (SEM) to study the treatment effects on fiber surface Elucidate the reaction mechanisms behind laccase-catalyzed grafting of phenolic substrates onto sisal fibers

Professor AJ Ragauskas, Supervisor