Laccase-generated o-quinones in onaphthoquinone synthesis via Diels-Alder reaction

Abdullah Zettili Dr. Arthur Ragauskas Georgia Institute of Technology

Objectives

- To find other potential uses of the enzyme laccase in organic synthesis
- Use green chemistry in the synthesis of organic compounds
- Find a reliable mechanism that allows for the synthesis of o-naphthoquinones in maximum yield

About the Enzyme Laccase

- It was discovered in 1883 by the Japanese scientist Yoshida
- What are laccases?
 - They are multi-copper-containing enzymes
 - Widely distributed among plants and can be found in fungi
 - They catalyze the oxidation of various aromatic compounds

Structure of Laccase

Ribbon diagram of laccase showing the two channels leading to the T2/T3 cluster

Reactions in Water

Benefits:

- Water is a desirable solvent for reasons of cost, safety, and environmental concerns
- Ease of product isolation
- Substantial rate acceleration when insoluble reactants are stirred in aqueous suspension
- Safety due to high heat capacity and unique redox stability

Experiment

General Reaction Scheme

o-naphthoquinone

The following are varied to reach optimal reaction conditions:

- Ratio of diene to dienophile
- Temperature
- Laccase dose

Optimization of Reaction Condition

- Reaction condition with best results:
 - Diene to dienophile ratio of 1:10
 - Reaction remperature of approximately 0-5°C
 - Reaction time of 6 hours

Proposed Reaction Pathway

Table 1: reaction of 4-methylcatechol with a variety of dienes

catechol	diene	temperature (°C)	time (hours)	ratio	% yield
OH OH		ice—RT	24	1:10	33.48%
	OMe	ice—RT	24	1:10	76.72%
		ice—RT	24	1:10	57.39%
		ice—RT	24	1:10	No product formed
	OCH 3	ice—RT	24	1:10	O OMe OMe 10.18%

Table 2: reaction of 2,3-dimethyl-1,2-butadiene with a variety of dienophiles

diene	catechol	temperature (°C) A ice—RT	time (hrs)	ratio 1:10	%yield		
	ОН				0	0	
		B ice—RT	96	1:15			
,					A 6.86% B 13.73	A 47.73° B 15.10	
	OH OH CH ₃	ice—RT	5	1:10	6.57%	10.05%	
	OH OH CH ₃	ice—RT	24	1:10	5	57.39%	
	ОН	ice—RT	24	1:10			
					97% only q no product		

Conclusion

- This method is effective in the synthesis of onapthoquinones
- The use of the enzyme laccase as an oxidizing agent and water solvent is both safe and environment-friendly
- The percent yield of the reaction depends on multiple factors

Acknowledgements

And

Special thanks to:

My advisor Dr. Arthur Ragauskas My mentor Suteera Witayakran And to all REU Supervisors